Evaluating Climate Models
Eric Gilleland
Research Applications Laboratory,
2016 ASA Joint Statistical Meetings
Chicago, Illinois, U.S.A.

Co-authors: Caspar Ammann, Barb Brown, Melissa Bukovsky, Seth McGinnis, Linda Mears, and Christopher Williams

Support for this work provided by the NSF via the Weather and Climate Impacts Assessment Science Program (http://www.assessment.ucar.edu) and Earth System Modeling (EaSM) Grant number AGS-1243030.
Severe Storm Environments

CAPE × Shear (J kg\(^{-1}\) × m s\(^{-1}\))

\(W_{\text{max}} \times \text{Shear} (\text{WmSh, m}^2\text{s}^{-2})\)
<table>
<thead>
<tr>
<th>Model Description</th>
<th>NCEP reanalysis</th>
<th>Community Climate System Model</th>
<th>3rd Generation Coupled Global Climate Model</th>
<th>Hadley Centre Coupled Model, v. 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canadian Regional Climate Model (CRCM)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Hadley Regional Model 3 (HRM3)</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Pennsylvania State University/NCAR mesoscale model (MM5I)</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Weather Research and Forecasting model (WRFG)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

NCEP reanalysis abbreviation: NCEP

Community Climate System Model abbreviation: CCSM3

3rd Generation Coupled Global Climate Model abbreviation: CGCM3

Hadley Centre Coupled Model, v. 3 abbreviation: HadCM3

Website links:
- http://www.narccap.ucar.edu/
- http://www.emc.ncep.noaa.gov/mmb/rreanl/
Lingo

WmSh: As before, but set to zero if CAPE < 100 J kg\(^{-1}\)
or \(5 \leq \text{Shear} \leq 50\) ms\(^{-1}\)

q75: Univariate time series giving the upper quartile of
a random variable (CAPE or WmSh) over space at
each time point.

High “field energy”: when q75 > its 90\(^{\text{th}}\) percentile over
time.

\(\kappa\): Frequency of CAPE \(\geq 100\) J kg\(^{-1}\) conditioned on the
presence of high field energy.

\(\omega\): Frequency of WmSh \(\geq 225\) m\(^2\)s\(^{-2}\) conditioned on the
presence of high field energy.
Image Warping

0–energy field

1–energy field

Error Field

RMSE_0 = 0.2665 RMSE_1 = 0.1605

% error reduction ≈ 40%
minimum bending energy = 2.0042

Distance travelled

Deformed 1–energy field

Error Field (after warping)
Image Warping

Pair of thin-plate spline transformations

\[\Phi(s) = (\Phi_1(s), \Phi_2(s))^T = a + Gs + W^T \Psi(s - p_0) \]

x-coordinate y-coordinate

affine transformation

\[\Psi(h) = \|h\|^2 \log \|h\| \]

Columns of coefficients in \(W \) and the sum of products of \(W \) times \(p_0 \) both constrained to sum to 0.
Image Warping

Pair of thin-plate spline transformations

\[
\Phi(s) = (\Phi_1(s), \Phi_2(s))^T = a + Gs + W^T \Psi(s - p_0)
\]

\[
LA = \begin{bmatrix}
\Psi & 1_k & p_0 \\
1_k^T & 0 & 0 \\
p_0^T & 0 & 0
\end{bmatrix}
\begin{bmatrix}
w \\
a^T \\
g^T
\end{bmatrix} = \begin{bmatrix}
p_1 \\
0 \\
0
\end{bmatrix}
\]

Want \(L^{-1} \). The upper \(k \times k \) matrix of \(L^{-1} \), call it \(L^{11} \), gives the bending energy matrix. And \(W = L^{11}p_1 \). The bending energy is given by \(\text{trace}(p_1^T L^{11} p_1) \).
Image Warping

k parameters of interest are the locations \mathbf{p}_1.

Found by numerically optimizing the objective function:

$$Q(\mathbf{p}_1) = \frac{1}{N \sigma^2} \sum_{s=1}^{N} \left(\hat{Z}(W(s)) - Z(s) \right)^2 +$$

$$\beta \left[\left(\mathbf{p}_{1,x} - \mathbf{p}_0 \right)^T L_{11} \left(\mathbf{p}_{1,x} - \mathbf{p}_0 \right) + \left(\mathbf{p}_{1,y} - \mathbf{p}_0 \right)^T L_{11} \left(\mathbf{p}_{1,y} - \mathbf{p}_0 \right) \right]$$
Image Warping

<table>
<thead>
<tr>
<th>Model Combination</th>
<th>RMSE_0</th>
<th>RMSE_1</th>
<th>RMSE Reduction</th>
<th>Minimum Bending Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRCM-CCSM3</td>
<td>0.214</td>
<td>0.139</td>
<td>35%</td>
<td>0.96</td>
</tr>
<tr>
<td>CRCM-CGCM3</td>
<td>0.147</td>
<td>0.103</td>
<td>30%</td>
<td>1.07</td>
</tr>
<tr>
<td>HRM3-HadCM3</td>
<td>0.157</td>
<td>0.110</td>
<td>30%</td>
<td>0.25</td>
</tr>
<tr>
<td>MM5I-CCSM3</td>
<td>0.267</td>
<td>0.161</td>
<td>40%</td>
<td>2.00</td>
</tr>
<tr>
<td>MM5I-HadCM3</td>
<td>0.148</td>
<td>0.084</td>
<td>43%</td>
<td>0.69</td>
</tr>
<tr>
<td>WRFG-CCSM3</td>
<td>0.249</td>
<td>0.096</td>
<td>61%</td>
<td>3.27</td>
</tr>
<tr>
<td>WRFG-CGCM3</td>
<td>0.241</td>
<td>0.092</td>
<td>62%</td>
<td>3.32</td>
</tr>
<tr>
<td>CRCM-NCEP</td>
<td>0.214</td>
<td>0.173</td>
<td>19%</td>
<td>0.25</td>
</tr>
<tr>
<td>WRFG-NCEP</td>
<td>0.171</td>
<td>0.092</td>
<td>46%</td>
<td>0.43</td>
</tr>
</tbody>
</table>
Conclusions

• Models generally agree with NARR about spatial location and overall pattern of high severe storm frequencies (κ and ω).
• They tend to under-project the spatial extent of high frequency areas compared to NARR.
• HRM3-HadCM3 is by far the closest to NARR for both κ and ω.
• WRFG configurations not coupled with NCEP (i.e., “observations”) have the least agreement with NARR.
• Climate models should reproduce observed distributional properties for the current-period climate, making spatial forecast verification methods particularly useful, and easy to implement in this context.
• Full analysis including many other spatial methods in G. et al. (submitted to ASCMO, available at http://www.ral.ucar.edu/staff/ericg/GillelandEtAl2016.pdf)