The Extremes Toolkit (extRemes)

Weather and Climate Applications of Extreme Value Statistics

Eric Gilleland

National Center for Atmospheric Research (NCAR), Research Applications Laboratory (RAL)

Richard W. Katz^{1, 2}

NCAR, Institute for the Study of Society and Environment (ISSE)

These photographs were obtained from the NCAR image library. "The source of this material is the University Corporation for Atmospheric Research (UCAR). ©2002 University Corporation for Atmospheric Research. All Rights Reserved."

Web Page

http://www.assessment.ucar.edu/toolkit

Acknowledgements

- 1. The Extremes Toolkit is funded by the National Science Foundation (NSF) through the NCAR Weather and Climate Impact Assessment Science Initiative (now Program) with additional support from the NCAR Geophysical Statistics Project (GSP). Initial work on the toolkit was performed by **Greg Young**.
- 2. We thank **Stuart Coles** for his permission to use his S functions and **Alec Stephenson** for supplying his R port of these functions to the R-CRAN website.

Outline

- Motivation and Goals for The Extremes Toolkit
- The R programming language
- Overview of Functionality of extRemes
- Example
- On-going work

Motivation

The toolkit was motivated by the continued use, particularly by non-statisticians, of traditional statistical distributions (e.g., normal, lognormal, gamma, etc.) in situations where extreme value theory is applicable.

Goals

- To provide a GUI prototype to interact with a high-level language capable of advanced statistical applications.
- Available to a wide audience (not just statisticians).
 - Weather and Climate Impacts (and related) scientists.
 - Free!
 - Consistent across major platforms (e.g., Windows, Linux, Mac OS).
 - Small Learning Curve.

The R Project for Statistical Computing

extRemes is written in and requires R, but does <u>not</u> require familiarity with R.

About R

- R is a language and environment for statistical computing and graphics.
- It's Free!
- Curiously similar to S-Plus.
- Mostly identical across platforms.
- C, C++ and Fortran code can be linked and called at run time.
- Many researchers contribute packages to R (over 500 packages on CRAN).

http://www.r-project.org

Functionality of extRemes

- Data management
 - Opening data files
 - Simulating Data (GEV, GPD)
 - Data Transformations
- Log file (extRemes.log) showing executed code
- Graphical Displays
- Fitting data
- Mostly, extRemes is a GUI interface to ismev, but has some additional functionality. For example,
 - Runs Declustering
 - Extremal Index
- Other Diagnostics

Data management: Opening data files

X⊐¤ Extremes Toolkit:	version 1.50
File Plot Analyze	
Read Data	Toolkit (extRemes):
Simulate Data 🕞 🕞	imate Applications of
Decluster	- X ->> Open
Transform Data 🛛 🕞	Directory: /home/ericg/Src/library/extRemes/data 🗕 主
Data Summa ry	a la damage.R E HEAT.R E SEPTsp.R B Denmint.R E Ozone4H.dat E Tphap.R
Scrubber	Denversp.R Dozone4H.R
Clear log file	Flood.R PORTW.R
Save	FtCoPrec.R Rsum.R
Exit	
	File name: Flood.dat
	Files of type: Cancel

File Type	Delimiter:	📕 Header	Save As (in R)	ок
🔶 Common	Γ		Flood	Canad
💠 R source				

> [1] "Successi	[;] ully open	ned file: Fi	lood.dat"		
	ÖBS	HYEAR	USDMG	DMGPC	LOSSPW
N	66.00000	66.00000	66.000000	66.00000	66.0000
mean	33.50000	1964.50000	2.629076	12.92844	270.5659
Std.Dev.	19.19635	19.19635	3.168426	13.88106	293.8702
min	1.00000	1932.00000	0.116800	0.92420	14.5300
Q1	17.25000	1948.25000	0.690225	3.78565	92.1600
median	33.50000	1964.50000	1.395600	7.53605	163.9700
Q3	49.75000	1980.75000	3.381075	16.55457	333.7825
max	66.00000	1997.00000	17.167800	68.32760	1453.1300
missing values	0.00000	0.00000	0.000000	0.00000	0.0000
Saving workspa	ace (may f	take a few ı	noments) .		

Data management: Simulating Data

File Plot Analyze	
Read Data	Toolkit (extRemes):
Simulate Data 🕞	Generalized Extreme Value (GEV)
Decluster	Generalized Pareto (GP)

🗙 🛏 Simulate GEV Data 📰 🔲 💌					
GEV parameters	Save As				
	generati				
Location parameter (mu): 0 Trend: 0	Generate				
Scale parameter (sigma): 1					
Shape parameter (xi) : 0.2					
Sample Size: 50					
Cancel Help					

Data management: Data Transformations

File Plot Analyze	
Read Data Simulate Data	Toolkit (extRemes): .imate Applications c
Transform Data 🕞	Negative
Data Summary	Logarithm Log Daily Returns
Scrubber	Affine Transformation
Clear log file	Indicator Transformation
Save	Trigonometric Transformation
Exit	

Log file

```
p <- c( 0, 1, 0.2)
gev.sim <- gen.gev(p=p, n=50, trend=0)
plot( gev.sim)
gev.sim <- cbind(1:50, gev.sim)
colnames( gev.sim) <- c("obs","gev.sim")
gev.sim <- as.extRemesDataObject( gev.sim)
gev.sim[["name"]] <- "GEV Simulated"
gev.sim[["params"]] <- c(0, 1, 0.2, 0)
gev.sim[["generated"]] <- TRUE
assign( "generati", gev.sim, pos=".GlobalEnv")
save.image()
""
```

Graphical Displays

Fitting data

Analyze	
Generalized Extreme Value (GEV) Distribution r-th Largest Order Statistics Model Poisson Distribution	reme-Vai
Generalized Pareto Distribution (GPD) Point Process Model	ation, a at:
Parameter Confidence Intervals	GEV fit
Likelihood-ratio test	GPD fit
Fit Summary	
Extremal Index	

Open the dataset (PORTw.R)

X=M Extremes Toolkit:	version 1.50	
File Plot Analyze		
Read Data Simulate Data	Toolkit (extRemes): .imate Applications of	
Decluster Transform Data	<mark>∑-™ Open</mark> Directory: /home/ericg/Src/library/extRemes/data	- E
Data Summary	🖹 damage.R 🖹 HEAT.R 🖹 SEPTsp.R	
Scrubber Clear log file	Denversp.R E Ozone4H.R Flood.dat E Peak.R Flood.R E PORTW.R ftcanmax.R E Potomac.R	
Save	FtCoPrec.R Rsum.R	
Exit	File name: PORTw.R	<u>O</u> pen
	Files of <u>type</u> :	<u>C</u> ancel

File Type	Delimiter:	🔲 Header	Save As (in R)	ок
🐟 Common	Γ		PORT	Connect
🔶 R source				

> [1] "Successfully opened file: PORTw.R"						
	Year	MTMAX	MTMIN	STDTMAX	STDMIN	TMX1
Ν	68.00000	68.000000	68.000000	68.000000	68.000000	68.000000
mean	1961.01471	2.872543	-7.151029	5.0702144	5.9775104	16.315363
Std.Dev.	20.21119	1.445223	1.659042	0.8015449	0.7967736	3.104209
min	1927.00000	-0.360200	-10.667900	3.6730700	4.2801700	10.000000
Q1	1943.75000	1.739197	-8.152800	4.6058525	5.4579200	14.305525
median	1961.50000	2.811730	-6.836400	5.0246850	5.8272150	16.666700
Q3	1978.25000	3.816355	-6.202150	5.3763175	6.4117725	17.777800
max	1995.00000	6.208790	-3.211200	7.3393700	8.1993800	23.888900
missing values	0.00000	0.000000	0.000000	0.0000000	0.0000000	0.000000
	TMNO	MDTR	AOindex			
N	68.000000	68.00000 6	58.00000000			
mean	-22.001631	10.02631 -	-0.04672824			
Std.Dev.	3.450322	0.77566	1.07917299			
min	-28.888900	8.57050 -	-2.61315000			
Q1	-24.027775	9.47535 -	-0.69499500			
median	-21.944450	9.95680 -	-0.02762000			
Q3	-19.444400	10.41050	0.70904750			
max	-13.888900	12.50940	2.90473000			
missing values	0.000000	0.00000	0.00000000			

Saving workspace (may take a few moments for large workspaces) ...

Workspace saved.

Daily *block* maxima and minima Winter temperature (^{o}C) at Port Jervis, New Jersey

with a covariate for the North Atlantic Oscillation index from 1927 through 1995.

Take the negative of minimum temperature data

File Plot Analyze		
		🔀 🛏 Negative Transfc 🗖 🗖
Read Data	Toolkit (extRemes):	Data Object
Simulate Data 📃 🕞	.imate Applications c	Flood
Decluster		PORT
Transform Data 🕨	Negative	
Data Summary	Logarithm	Variables to Transform
	Log Daily Returns	STDMIN
Scrubber	Affine Transformation	TMXI
Clear log file	Indicator Transformation	TMNO
	Trigonometric Transformation	MDTR
Save		AOindex
Exit		OK Cancel Help

Plot minimum temperature against time

Fit minimum temperature data to a GEV distribution

Fit minimum temperature data to a GEV with AO index as a covariate in the scale parameter

X-∺ Fit. Generali	ized Extreme '	Value Distribut	ion		• • ×	
	Data Ol	bject Flood generati PORT	i			
Optimization Me	ethod BFGS o	quasi-Newton				
Response:	TMNO MDTR AOindex TMN0.neg			∐ ☐ Plot dia(✓	gnostics	
	Location parameter (mu):					
	Scale param	eter (sigma):	TMX1 TMN0 MDTR AOindex	Link:	∻ identity ♦ log	
	Shape pa	rameter (xi):	Year MTMAX MTMIN STDTMAX		◆ identity ◇ log	
		OK Canc	el Help			

Likelihood ratio test between the two fits

🗙 🛏 Likelihood-ratio test for comparing nested fits 📖 🔳 💌	
Data Object:	
Flood	
generati	significance level (alpha) 0.05
Select base fit (M0): Select comparison fit (M1):	
gev.fit1 🛛 🔼	gev.fit1 🔼
gev.fit2	gev.fit2
OK Cancel	Help

Likelihood-ratio test statistic for models: M0 = gev.fit1 and M1 = gev.fit2 is: 0.6072 <= 3.8415 = 1 - 0.05 quantile of a Chi-square with 1 degrees of freedom. *******

p-value = 0.435834

Tutorial

One of the major components of extRemes is the tutorial, which can be found at

http://www.assessment.ucar.edu/toolkit

Table of Contents

- <u>Preliminaries</u>
 - <u>Starting the Extremes Toolkit</u>
 - ∘ <u>Data</u>
 - Loading a dataset
 - Simulating data from a GEV distribution
 - Simulating data from a GPD
 - Loading an R Dataset from the Working Directory
- Block Maxima Approach
 - Fitting data to a GEV distribution
 - \circ Return level and shape parameter (ξ) (1- α)% confidence limits
 - Fitting data to a GEV distribution with a covariate
- Frequency of Extremes
 - Fitting data to a Poisson distribution
 - Fitting data to a Poisson distribution with a covariate
- r-th Largest Order Statistic Model
- Generalized Pareto Distribution (GPD)

 - \circ Return level and shape parameter (ξ) (1-lpha)% confidence bounds
 - Threshold Selection

Ongoing work

(and work I'd like to have done)

- Spatial extRemes
- More functionality (e.g., goodness of fit tests, Hill estimator, L-moments?, ...)
- More user-friendliness (e.g., "stickies", ...)
- Find out who is using it, and how many. Important for future funding.