A Field Deformation Approach to Spatio-Temporal Forecast Verification of Gridded Sets

92nd Annual American Meteorological Society Meeting, 22–26 January 2012, New Orleans, Louisiana

Eric Gilleland
Research Applications Laboratory, National Center for Atmospheric Research

Spatial Forecast Verification Methods

Inter-Comparison Project (ICP)

 Filtering
- neighborhood
- scale-separation

 Filtering
- feature-based
- field deformation

http://www.ral.ucar.edu/projects/icp
Displacement Methods: Field deformation

Goal: Inform about how well the forecast captures spatial extent/patterns.

Examples:

Binary Image Metrics (Venugopal *et al.*, 2005; G. 2011; Schwedler and Baldwin, 2011; Zhu *et al.*, Submitted)

Optical Flow (e.g., Keil and Craig, 2008, 2009)

Image Warping (e.g., Alexander *et al.*, 1998; G., Lindström and Lindgren, 2010)

Distortion representation (e.g., Hoffman *et al.*, 1995)
Displacement Methods: Field Deformation

Field Deformation Methods: Image Warping

\[O(x, y) = F(W_x(x, y), W_y(x, y)) + \varepsilon \]
Displacement Methods: Field Deformation

Field Deformation Methods: Image Warping

\[O(x, y) = F(W_x(x, y), W_y(x, y)) + \varepsilon \]

- \(W \) is a warping function that acts on both coordinates \(x \) and \(y \) of an image, and is applied to both coordinates;

- Many choices for \(W \), e.g.,
 - polynomials (e.g., Alexander et al., 1999; Dickinson and Brown, 1996)
 - B-splines (e.g., Engel in prep?)
 - Thin-plate splines (e.g., G., Lindström and Lindgren, 2010)

- Find optimal warp by optimizing a likelihood function.
Displacement Methods: Field Deformation

Field Deformation Methods: Image Warping

TPS warp function is a linear function in the 1-energy control points. That is,

$$W(s, p^O, p^F) = B(s, p^O)p^F$$

where B is a matrix of radial basis functions that is \emph{pre-calculated}.
Displacement Methods: Field Deformation

Field Deformation Methods: Image Warping
Optimize (log) likelihood:
\[
\ell(p^F|O, F, p^O) = \log p(O|F, p^F, p^O) + \log p(p^F|p^O) + \log p(\vartheta)
\]

- Intensity component
- Location/spatial placement component
- Possibly hyper-parameters
Displacement Methods: Field Deformation

Field Deformation Methods: Image Warping

For the TPS Warp, the following optimization function can be used (assumes Gaussian errors, and a Markov Random Field Model for the control point differences).

\[
Q(p^F) = \frac{1}{2\sigma^2} \sum (O(s) - F(W(s)))^2 + \frac{1}{2\sigma^2_\Delta} \left[(p_x^F - p_x^O)^T (I - C)(p_x^F - p_x^O) + (p_y^F - p_y^O)^T (I - C)(p_y^F - p_y^O) \right]
\]

e.g., Åberg et al., *Environmetrics*, 16(8):833–848, 2005.
ICP Test Cases

Forcast
Observation
Deformed forcast

MSE 671.32
MSE 0.27
Warp -3.39×10^{-3}
x: 33.3 y: 0.1
sx: 0.252 sy: 1.029

Geometric 3; 125 grid points too far east and larger spatial coverage
≈ 100 grid points west
Squeezes horizontally.
\[
\text{MSE(before)} = 17,508 \quad \frac{17,508 - 9,316}{17,508} \approx 47\%
\]
Space-Time Image Warp

Industrial Mathematical and Statistical Modeling Workshop for Graduate Students

July 19-27, 2010
North Carolina State University, Raleigh, NC

Sponsored by
Statistical and Applied Mathematical Sciences Institute (SAMSI), RTP, NC

Center for Research in Scientific Computation, Raleigh, NC

Space-Time Image Warp

Can timing errors be distinguished from spatial displacement errors?

Extension of 2-d spatial warping to space-time

Equations about the same, but with the added dimension. Tri-harmonic basis functions instead of 2-d TPS radial basis functions.
Space-Time Image Warp

Can timing errors be distinguished from spatial displacement errors?

Extension of 2-d spatial warping to space-time

\[
Q(p^F) = \frac{1}{2\sigma^2_{\varepsilon}} \sum (O(s) - F(W(s)))^2 + \\
\frac{1}{2\sigma^2_{\Delta}} \left[(p^F_x - p^O_x)^T (I - C)(p^F_x - p^O_x) + (p^F_y - p^O_y)^T (I - C)(p^F_y - p^O_y) \right] + \\
\frac{1}{\sigma^2_t} \left[(p^F_t - p^O_t)^T (I - C)(p^F_t - p^O_t) \right]
\]
Space-Time Image Warp

Example

Reduction in RMSE is over 50% after applying space-time warp. Most errors were spatial only.
Final Remarks

http://www.ral.ucar.edu/projects/icp

• See ICP web page under References and Special Collection for full references from these slides.

• ICP2 starting up! Goal is to investigate precipitation and wind fields over more complex terrain.

• Participation in the ICP is encouraged. Sign up to receive emails at the web site.

• New R software package for image warping is under development.

• New R Software package SpatialVx will contain all of the image warping techniques given here (via the to-be-submitted warping package), and most other techniques of the ICP, as well as others.