Intercomparison of spatial forecast verification methods: A review and new project launch

Project committee:
Marion Mittermaier, Met Office, UK
Eric Gilleland and Barb Brown, NCAR, USA
Manfred Dorninger, University of Vienna, Austria
Beth Ebert, Bureau of Meteorology, Australia
Laurie Wilson, Environment Canada
Outline

- A brief history → “ICP1”
- Aims of the new project → “ICP2”
- Data sets
- Experimental outline
- Invitation and timelines
ICP

• 2008-2010
• Focus on precipitation
• Methods applied by researchers to same datasets (real forecasts; perturbed cases; idealized cases)
• Subjective forecast evaluations
• *Weather and Forecasting* special collection 2009-2010
• Code available online

[Image of maps with data points indicating forecast accuracy]
Categorisation of methods

<table>
<thead>
<tr>
<th>Category</th>
<th>Scales with skill</th>
<th>Location errors</th>
<th>Intensity errors</th>
<th>Structure errors</th>
<th>Occurrence (hits, misses, false alarms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traditional (gridpoint)</td>
<td>×</td>
<td>×</td>
<td>✓</td>
<td>×</td>
<td>✓</td>
</tr>
<tr>
<td>Neighbourhood</td>
<td>✓</td>
<td>×</td>
<td>✓</td>
<td>×</td>
<td>✓</td>
</tr>
<tr>
<td>Scale separation</td>
<td>✓</td>
<td>×</td>
<td>✓</td>
<td>×</td>
<td>✓</td>
</tr>
<tr>
<td>Features based</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Deformation</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
<td>×</td>
</tr>
</tbody>
</table>

Gilleland et al., Bulletin of the American Meteorological Society, 2010
Different methods have different aims

Scale separation and neighbourhood methods
- Focus on accuracy quantification
- What is the forecast accuracy at small scales? Large scales? Low / high intensities?
- What spatial scales and intensities have reasonable accuracy?
- Different methods emphasize different aspects of accuracy

Feature-based methods
- Focus on describing the error
- What is the error in this forecast?
- What is the cause of this error (wrong location, wrong size, wrong intensity, etc.)?

Field deformation methods (morphing)
- Focus on describing phase errors
- Does the shape/placement of the forecast resemble the observations?
Usage

Scale separation and neighbourhood methods
- Whenever high density observations are available over a reasonable domain
- When knowing scale- and intensity-dependent skill is important
- When comparing forecasts at different resolutions

Feature-based methods
- When features are well defined (organized systems, longer rain accumulations)
- When it is important to measure how well the forecast predicts the properties of systems
- When size of domain >> size of systems

Field deformation (morphing)
- When forecasts have a fair resemblance to the observations
- Absence of a feature in the observations or forecast leads to peculiar behaviour of distortion vectors
- When knowing phase errors of the field is important
Aims of ICP2

How do/can spatial methods:

• Transfer to other regions with complex terrain, and other parameters: wind (speed and direction) and rain?

• Work with ensembles?

• Incorporate observations uncertainty?
Models

- From MAP D-PHASE COPS archive
 - Deterministic 2 km COSMO-2 Init-time:
 - Initialised 06 UTC FC-range: 24h
 - Ensemble 10 km CMC-GEM-H Init-time:
 - Initialised 06 UTC FC-range: 18h

- Invitation for modelling centres to produce re-runs of cases with more up-to-date model configurations (Tier 3), but core experiments to be done using COSMO-2 and CMC-GEM-H.
Observations data set

JDC-data: D-PHASE (FDP, Rotach, et al., 2009, BAMS) and WWRP COPS (RDP, Wulfmeyer, et al., 2008, BAMS), data available: (http://cera-www.dkrz.de/WDCC/ui/Index.jsp)

- 32 data providers
- GTS-Stations: 1232
- NGTS-Stations: > 13000
- Mean station distance: GTS: ~ 36km
 GTS+Non-GTS: ~ 12km

Frames:
- D-PHASE (black, large)
- COPS (black, small)
- this study (green)

Red: Non-GTS stations
Blue: GTS stations
VERA analysis scheme

(Vienna Enhanced Resolution Analysis)

Data quality control scheme
+ Thin-Plate-Spline algorithm
+ Downscaling via the „Fingerprint“ method

Not dependent on first guess fields – „model independent“

Wind
Potential Temperature
Equivalent – Pot. Temperature
Precipitation: Accumulated to 1h, 3h, 6h, 12h, 24h
Post processing:
- Mixing Ratio
- Moisture Flux Divergence

Core
Deterministic precip + VERA analysis + JDC obs
6 cases, min 1

Tier 1
Deterministic wind + VERA ensemble + JDC obs
Deterministic analysis + VERA analysis + JDC obs

Tier 2a
Ensemble precip + VERA ensemble + JDC obs
Ensemble wind + VERA ensemble + JDC obs

Tier 2b
Ensemble precip + VERA ensemble + JDC obs
Ensemble wind + VERA ensemble + JDC obs

Tier 3
Other variables ensemble + VERA ensemble + JDC obs

Experimental design
Outcomes

- Participants must complete the core experiment for at least case 1 to formally be classed participants.

- This requires the provision of hourly verification statistics (following the forecast evolution) for:
 - Hourly precipitation (and 6h precipitation)
 - Hourly wind speed and direction

- Participation in subsequent tiers 1-3 is at the discretion of participants, but output should follow the same rules as above.

- We extend an invitation to modelling centres to produce re-runs of cases with more up-to-date model configurations under Tier 3, but core experiments must be done using COSMO-2 and CMC-GEM-H.
Case 1
20-22 June 2007
Strong wind/heavy rain

Case 2
18-21 July 2007
Front and convergence

Case 3
25-29 September 2007
Strong convergence

Case 4
6-8 August 2007
N-S front

Case 5
18 September 2007
Cold front

Case 6
8-9 July 2007
Heavy rain
Invitation and timeline

• **Now**: Recruiting participants
• **Jan-Feb**: Data sets available from NCAR ftp; collecting datasets; work commences
• **Mar 2014**: Initial results session at 6th international verification methods workshop

17-19 March 2014
New Delhi

To express interest:
Send email to Eric Gilleland (ericg@ucar.edu)

http://www.ral.ucar.edu/projects/icp/index.html