Verifying NWP-model chains by using model independent analyses

Manfred Dorninger and Theresa Gorgas
Outline

1. Motivation
2. Data
 2.1 Observation data and analysis
 2.2 Selected NWP model chains
3. Verification strategy and methods
4. Results
 4.1 Overall evaluation
 4.2 Case studies
5. Summary and Outlook
1. Motivation

Draw-up an “ideal“ verification scheme for an inter-comparison of model chains

Criteria/Tasks/Challenges:

• verify the whole model chains including their global model
• use same initialisation time and forecast periods for all models
• run over unified verification area
• use novel (spatial) verification methods
• verify multiple meteorological parameters (not only precip.)
• use NWP model independent analyses as reference
2. Data
2.1. Observation data (JDC-data) and VERA analysis

JDC-data: WWRP D-PHASE (FDP, Rotach, et al., 2009, BAMS) and WWRP COPS (RDP, Wulfmeyer, et al., 2008, BAMS), data available: (http://cera-www.dkrz.de/WDCC/ui/Index.jsp)

- 32 data providers
- GTS-Stations: 1232
- NGTS-Stations: > 13000
- Mean station distance: GTS: ~ 36km
 GTS+Non-GTS: ~ 12km

Frames:
- D-PHASE (black, large)
- COPS (black, small)
- this study (green)

Red: Non-GTS stations
Blue: GTS stations
2.1. Observation data (JDC-data) and VERA analysis

The analysis scheme VERA

(Vienna Enhanced Resolution Analysis)

- Data quality control scheme
- Thin-Plate-Spline algorithm
- Downscaling via the „Fingerprint“ method

Not dependent on first guess fields – „model independent“

<table>
<thead>
<tr>
<th>Wind</th>
<th>Potential Temperature</th>
<th>Precipitation: Accumulated to 1h, 3h, 6h, 12h, 24h</th>
<th>Post processing:</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSL - pressure</td>
<td>Equivalent – Pot. Temperature</td>
<td></td>
<td>- Mixing Ratio</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Moisture Flux</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Divergence</td>
</tr>
</tbody>
</table>

2.2. NWP-model chains

- Selection from D-PHASE model ensemble

• selected models should reflect the variety of model types in terms of dynamics, parametrisation, hydrostatic vs. non-hydrostatic and convection-permitting models
• same initialisation time → do not use the coupled model runs, model starts from the same observations.
• same forecast period
• overlapping of the model domains maximized → same topography and same weather situation are described by the models
2.2. NWP-model chains

- Selection from D-PHASE model ensemble

<table>
<thead>
<tr>
<th>Model</th>
<th>Model abbreviation</th>
<th>Mesh Size</th>
<th>Init. UTC</th>
<th>Forec. Range [h]</th>
<th>Provider</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chain 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECMWF-</td>
<td>ECM</td>
<td>25km</td>
<td>00, 12</td>
<td>240</td>
<td>ECMWF</td>
</tr>
<tr>
<td>ECMWF-BC</td>
<td></td>
<td>25km</td>
<td>00, 06, 12, 18</td>
<td>90</td>
<td>ECMWF</td>
</tr>
<tr>
<td>COSMO-7</td>
<td>CO7</td>
<td>7km</td>
<td>00, 12</td>
<td>72</td>
<td>Meteo Swiss</td>
</tr>
<tr>
<td>COSMO-2</td>
<td>CO2</td>
<td>2.2km</td>
<td>00, 03, 06, 09, 12, 15, 18, 21</td>
<td>24</td>
<td>Meteo Swiss</td>
</tr>
<tr>
<td>Chain 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARPEGE</td>
<td>ARP</td>
<td>0.25/0.5 deg (lat/lon)</td>
<td>00</td>
<td>72</td>
<td>Météo-France</td>
</tr>
<tr>
<td>ALADIN-FR</td>
<td>ALA</td>
<td>9.5km</td>
<td>00</td>
<td>30</td>
<td>Météo-France</td>
</tr>
<tr>
<td>AROME</td>
<td>ARO</td>
<td>2.5km</td>
<td>00</td>
<td>30</td>
<td>Météo-France</td>
</tr>
<tr>
<td>Chain 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMC-GEM</td>
<td>CMG</td>
<td>0.3/0.45 deg (lat/lon)</td>
<td>00</td>
<td>24(144)</td>
<td>Environment Canada</td>
</tr>
<tr>
<td>CMC-GEM-L</td>
<td>CML</td>
<td>15km</td>
<td>00</td>
<td>24</td>
<td>Environment Canada</td>
</tr>
<tr>
<td>CMC-GEM-H</td>
<td>CMH</td>
<td>2.5km</td>
<td>06</td>
<td>18</td>
<td>Environment Canada</td>
</tr>
</tbody>
</table>
2.2. NWP-model data

All model data are interpolated on the VERA 8 km grid:

ARO: 600 x 704 km; 6764 GP
All other models: 1056 x 704 km; 11837 GP
3. Verification strategy and methods

Evaluation period:
- Overall evaluation (D-PHASE period; Jun-Nov 2007)
- Case studies

Evaluation domain:
- whole domain
- elongated sub-domain (analyse frontal propagation)

Parameters:
- precipitation
- but also Θ_e, wind, frontal speed and location

Verification scores:
- traditional verification metrics (e.g., bias-corrected RMSE)
- novel verification metrics (e.g., SAL, ISS, wavelet coherence)
4. Results
4.1 Overall evaluation

BC_RMSE: no added value of HRES models visible \rightarrow double penalty problem

Intensity-scale skill score (ISS, Casati et al., 2004)
1: perfect forecast
0: no skill added to reference forecast
4. Results

4.2 Case studies

Convective case: 7 Aug. 2007
Morning hours: MCS
Afternoon: shower cells over large area

Frontal case: 18 Sept. 2007
Fast moving front from west to east
impinging the Alps
4. Results
4.2 Case studies

SAL: Structure – Amplitude – Location (Wernli et al., 2008)
perfect forecast: $S=A=L=0$
4. Results
4.2 Case studies

- **Convective case**
 - CO7: 07.08. - 08.08.
 - ALA: 07.08. - 08.08.
 - CML: 07.08. - 08.08.

- **Frontal case**

Precipitation amount is...

- I: $S > 0$, $A > 0$
 - too large and/or too flat
 - underestimated

- II: $S > 0$, $A < 0$
 - too small and/or too peaked
 - overestimated

- III: $S < 0$, $A < 0$
 - too small and/or too peaked
 - underestimated

- IV: $S < 0$, $A > 0$
 - too large and/or too flat
 - overestimated
4. Results

4.2 Case studies

Frontal case:

meridional mean of W-E gradient of Θ_e.
4. Results
4.2 Case studies

Hovmöller diagram
Propagation speed: inverse slope $\Delta x/\Delta t$
Horizontal line \rightarrow prop. Speed = infinite
Vertical line \rightarrow stationary "system"

0.1 K/km
4. Results
4.2 Case studies

Estimated propagations speeds:
VERA: 15 m/s
ECM: 17 m/s
CO7: 15 m/s
CO2: 12 m/s – 18 m/s
5. Summary and Outlook

• Criteria established for a fair model chain inter-comparison
• use of NWP model independent analyses as reference based on JDC-data set
• selection of verification scores used to address the question: Can HRES models add skill to their coarse driving models?
• other meteorological parameters than precipitation are verified
• results indicate a different picture for each model chain

→ Invitation to participate in ICP2:
 side meeting at 18h30 in G10

http://www.ral.ucar.edu/projects/icp/index.html
References:

