Forecasting Minimum Temperatures for Dugway Proving Ground Using the 850 to 700mb Thickness

Carissa Klemmer

4DWX Forecasters Conference 2007
The Beginning

• Objective: To develop a method to enhance the accuracy of forecasting minimum temperatures at Dugway Proving Ground

• The project basics
 • The forecaster will determine the overnight weather conditions
 • Enter the data into an application
 • A projected low temperature will emerge
Step 1

- Where did this project conception come from?
 - Mark Struthwolf *Forecasting Maximum Temperatures through Use of an Adjusted 850 to 700mb Thickness Technique*

- SAMS 01 (Ditto) determined to be the focus location
 - Data back to 1988
 - Main forecasting location

- Is a temperature and thickness correlation going to work for the minimum temperature?
The beginning

• Time period breakdown
 • Viewed weekly / bi-weekly / monthly / seasonally

• Where to get the sounding data from?
 • Elko (1608m) / DPG (1324m) / Salt Lake City (1288m)

• Sounding time? 00 UTC or 12 UTC?
 • 12Z was decided because it correlates best with the time of the minimum temperature

• Before I continued I wanted to make sure there was at least a minimal correlation
First Plots

- Scatter plots
 - Minimum temperature vs. 12Z 850 to 700mb thickness
 - Plotted by month & season (DJF, MAM, JJA, SON)

- SAMS 01 minimum temperature and corresponding days SLC 12Z thickness
- Statistically I decided to go with a time period of seasons

\[y = 0.1593x - 213.9 \]
\[R^2 = 0.2395 \]

\[y = 0.1977x - 276.31 \]
\[R^2 = 0.5819 \]
Applying variables

• Next step is separating out the variables
 • Clouds, wind, precipitation, etc.

• Wind: from SAMS 01 wind speed was averaged from sunset to sunrise for every day

• Precipitation: noted if any recordable amount fell between sunset and sunrise

• Clouds: IR Satellite data was viewed hour by hour between sunset and sunrise for every day

• Other: snow cover, wind direction, previous days high temperature
Applying Variables

- Variables were broken down accordingly
 - Wind speed: $X < 5\text{mph} / 5 < X < 10\text{mph} / X > 10\text{mph}$
 - Clouds:
 - Clear < 3 hours of clouds
 - 3 hours of clouds \leq Partly Cloudy ≤ 3 hours of no clouds
 - Overcast < 3 hours of no clouds

- Other variables
 - Snow cover didn’t have a significant correlation
 - Wind direction didn’t affect the minimum temperature
 - No help from the previous days maximum temperature
 - Soil moisture did not have enough data
 - Inversion strength
Putting it all Together

• Individual scatter plots were created for each set of variables

• Obvious correlations occurred
Data Collection

• Data was collected for four years
 • Winter*: 450
 • Spring: 370
 • Summer: 360
 • Fall: 350
• Total number of data points: 1530
 *5 years of data collected

• Additional years will be added
Challenges

- Fog
- Any occurrence at DPG is recorded in a log book
- Does not include non-business days / hours
 - Viewed SLC & HIF observations
 - SAMS 01 relative humidity sensors

\[
y = 0.1328x - 186.31 \\
R^2 = 0.246
\]
Challenges

• Snow cover
 • Only recorded at DPG during the 18Z observation
 • Only recorded if amount is above 0.50 inch

• Used the NWS regional snow analysis for weekends and overnight
 • Data only archived back to 2003

• Bottom line
 • Snow cover was determined not to have a direct correlation with the thicknesses
Challenges

- Precipitation
 - Differences are both random and small
- Accounting for ± 1-2° F
- Virga?
- Winter precipitation an entirely different problem
- Snow melt

<table>
<thead>
<tr>
<th></th>
<th>INCLUDED</th>
<th>NOT INCLUDED</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sum: PC < 5 = 0.7514</td>
<td>Sum: PC < 5 = 0.7333</td>
</tr>
<tr>
<td></td>
<td>PC = Partly Cloudy</td>
<td>Decimal = r squared</td>
</tr>
<tr>
<td></td>
<td>Fall: PC < 5 = 0.6915</td>
<td>Fall: PC < 5 = 0.7009</td>
</tr>
<tr>
<td></td>
<td>Sum: OVC < 5 = 0.7066</td>
<td>Sum: OVC < 5 = 0.7107</td>
</tr>
<tr>
<td></td>
<td>OVC = Overcast</td>
<td>Units of wind are MPH</td>
</tr>
<tr>
<td></td>
<td>Fall: OVC < 5 = 0.5058</td>
<td>Fall: OVC < 5 = 0.4978</td>
</tr>
<tr>
<td></td>
<td>Sum: PC > 10 = 0.9358</td>
<td>Sum: PC > 10 = 0.9409</td>
</tr>
<tr>
<td></td>
<td>Fall: PC > 10 = 0.9541</td>
<td>Fall: PC > 10 = 0.9445</td>
</tr>
<tr>
<td></td>
<td>Sum: OVC > 10 = 0.9076</td>
<td>Sum: OVC > 10 = 0.7337</td>
</tr>
<tr>
<td></td>
<td>Fall: OVC > 10 = 0.8433</td>
<td>Fall: OVC > 10 = 0.8285</td>
</tr>
</tbody>
</table>

Bottom line, precipitation is not be a mitigating factor
Challenges

• Season transition periods

• Examples
 1. 03/13/06: 1506 meters / partly cloudy / wind < 5mph
 Actual low = 8
 Spring forecasted low = 20
 Winter forecasted low = 12
 2. 03/05/06: 1549 meters / clear / wind < 5mph
 Actual low = 18
 Spring forecasted low = 24
 Winter forecasted low = 17

• How do you know when to use one season vs. another?
Challenges

- Extreme low temperatures
 - I separated the temperatures that fell below 5 °F
- Inversion strength?
 - Have not unlocked the key yet
- Is this the best method to deal with extreme low temperatures?
Verification

16 random points selected from 1998 / 1999

<table>
<thead>
<tr>
<th>date</th>
<th>thickness Meters</th>
<th>clouds</th>
<th>winds MPH</th>
<th>Forecast Temp</th>
<th>Actual Temp</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>12/10/1998</td>
<td>1503</td>
<td>Clear</td>
<td>4.2</td>
<td>7</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>12/21/1998</td>
<td>1450</td>
<td>PC</td>
<td>8.7</td>
<td>6</td>
<td>-8</td>
<td>14</td>
</tr>
<tr>
<td>1/3/1999</td>
<td>1504</td>
<td>Clear</td>
<td>4.6</td>
<td>7</td>
<td>11</td>
<td>-4</td>
</tr>
<tr>
<td>2/27/1999</td>
<td>1531</td>
<td>PC</td>
<td>4.9</td>
<td>17</td>
<td>20</td>
<td>-3</td>
</tr>
<tr>
<td>3/6/1999</td>
<td>1532</td>
<td>OVC</td>
<td>4.8</td>
<td>27</td>
<td>23</td>
<td>4</td>
</tr>
<tr>
<td>3/30/1999</td>
<td>1601</td>
<td>PC</td>
<td>10</td>
<td>43</td>
<td>44</td>
<td>-1</td>
</tr>
<tr>
<td>4/15/1999</td>
<td>1545</td>
<td>Clear</td>
<td>4.4</td>
<td>23</td>
<td>24</td>
<td>-1</td>
</tr>
<tr>
<td>5/20/1999</td>
<td>1608</td>
<td>Clear</td>
<td>5.8</td>
<td>38</td>
<td>38</td>
<td>0</td>
</tr>
<tr>
<td>6/2/1999</td>
<td>1615</td>
<td>OVC</td>
<td>13.8</td>
<td>60</td>
<td>55</td>
<td>5</td>
</tr>
<tr>
<td>7/7/1999</td>
<td>1678</td>
<td>OVC</td>
<td>14.4</td>
<td>78</td>
<td>79</td>
<td>-1</td>
</tr>
<tr>
<td>7/29/1999</td>
<td>1662</td>
<td>OVC</td>
<td>10.3</td>
<td>74</td>
<td>69</td>
<td>5</td>
</tr>
<tr>
<td>8/15/1999</td>
<td>1646</td>
<td>Clear</td>
<td>11.8</td>
<td>59</td>
<td>59</td>
<td>0</td>
</tr>
<tr>
<td>9/8/1999</td>
<td>1629</td>
<td>Clear</td>
<td>4.8</td>
<td>38</td>
<td>43</td>
<td>-5</td>
</tr>
<tr>
<td>10/10/1999</td>
<td>1645</td>
<td>Clear</td>
<td>3.8</td>
<td>41</td>
<td>36</td>
<td>5</td>
</tr>
<tr>
<td>11/8/1999</td>
<td>1619</td>
<td>OVC</td>
<td>8.3</td>
<td>53</td>
<td>51</td>
<td>2</td>
</tr>
<tr>
<td>11/28/1999</td>
<td>1585</td>
<td>PC</td>
<td>3.5</td>
<td>31</td>
<td>18</td>
<td>13</td>
</tr>
</tbody>
</table>
How does a forecaster use this?

- First you have to forecast
 - The forecaster needs to know the overnight cloud and wind conditions

- Need the 850 to 700mb thickness

- What has the trend been for the last few days?

- Have an estimated temperature in mind before you use the application
Application

• This is the application that the forecasters use to input the forecasted conditions

![Application Interface]

- Select the season
- Enter the forecasted 650-700mb thickness at 12Z
- Select the overnight cloud conditions
- Select the overnight wind conditions

The forecasted minimum temperature is

The standard error is ±

The temperature and thickness correlation is
Model Output

- Currently, tracking the thicknesses
 - 4DWX - WRF virtual sounding tool
 - 11Z / 14Z / FA model runs
 - NSHARP - NAM
 - 12Z model run
 - U of Wyoming - SLC actual sounding data

- Preliminary results are positive
 - Model data seems to trend 2-5 meters lower than actual
Future/Current Work

• Adding more years of data
 • Statistically this will make the forecasts better

• Investigating the inversion strength
 • Relating to the outlying data points

• Continuing to verify model thickness outputs

• Distributing the application to other forecasters
Closing Points

• This is only meant as a tool for forecasters to use
 • If you don’t get the overnight weather conditions you are not going to have a successful forecast!

• DPG forecasters are currently using the application with proven success