Data Assimilation
Data assimilation in different tongues

- “Data assimilation” - GFD
- “State estimation” - nonlinear dynamics
- “Inverse modeling” - geophysics et al.
- “Signal processing” – engineering
- “Chaos synchronization” – physics

At root, it is blending/combining *multiple* sources of information to get a “best estimate.”
Goals of data assimilation

• Keep a numerical model “close” to a set of observations over time
• Provide appropriate initial conditions for a forecast
• Provide an estimate of analysis errors
• Propagate information from observations to unobserved locations
• Tell us something about how the model behaves
1B. Observations

Data Assimilation Process

- Red = Ob. to follow
- Blue = RAOB
- Purple = Aircraft
- Gray shading = Wind Speed (5 kt inc.)

1A. Short-range forecast

2. Observation increments

3. Analysis increments or "corrections"

4. Analysis

Cycling

Remainder of full-length forecast (Eta to 60 or 84 hours, AVN to 126 hours, etc.)

Quality control (on increment)

Objective analysis procedure

Next short-range "guess"

Forecast model

Schlatter / NOAA
Data Assimilation Process

1B. Observations

y^o
2. Observation increments

$$y^o - x^f$$
Data Assimilation Process

\[
\frac{\sigma_f^2}{\sigma_f^2 + \sigma_o^2} \left(y^o - x^f \right)
\]

3. Analysis increments or "corrections"
Review: main components

• Relating a gridded model state to observations

• Introducing them over some number of times (could be as few as one)

• (Initialization step)
Information propagation into unobserved areas

- Want *good* information to propagate
- Depends on
 - Quality of the model
 - Quality of the observations
 - Observation frequency and location
 - Balance of initial conditions
- Any good DA system can achieve this "optimally" if properly set up
Single-observation examples

• Single-time updates:
 – Cressman
 – Statistical

• Weather is 4D
 – Sequential
 – Continuous
First steps: Cressman

Weighted-average of nearby observations based on the distance squared.
Why not Cressman?

- If we have a preliminary estimate of the analysis with a good quality, we do not want to replace it by values provided from poor quality observations.
- When going away from an observation, it is not clear how to relax the analysis toward the arbitrary state, i.e. how to decide on the shape of the function.
- An analysis should respect some basic known properties of the true system, like smoothness of the fields, or relationship between the variables (e.g. hydrostatic balance). This is not guaranteed by the Cressman method: random observation errors could generate unphysical features in the analysis.

No background field!
A practical route to data assimilation...statistics

What temperature is it here?

\[x_1 \rightarrow x_2 \]
Form a linear combination of estimates

\[x^a = \alpha x_1 + (1 - \alpha) x_2 \]

\[x^a = \]

or

\[x^a = x_2 + \alpha (x_1 - x_2) \]
Include the background as one “obs”

- Generalize to many observations, including the background (first guess)

\[x_1 \rightarrow y^o \]

\[x_2 \rightarrow x^f \]
Statistical assimilation

- Observations have errors
- The forecast has errors

\[y^o = x^t - \varepsilon^o \]
\[x^f = x^t + \varepsilon^f \]

The truth \(x^t \) is unknown
Statistical assimilation

- Best linear estimate: combination between the background \(x_f \) at observation locations and the observations \(y^o \) themselves

- Think in terms of averages

- We do not know the truth, so we look for the maximum likelihood estimate, or the minimum-variance estimate
Statistical assimilation

• We don’t know truth, so we can’t know the errors.

• We have at least a chance of estimating the error variances

• Making these estimates is the heart of statistical data assimilation

σ_o^2, σ_f^2
Statistical assimilation

• The goal can be restated: find the best α that minimizes the analysis error on average

$$\mathcal{E}^a = x^t - x^a$$

• The analysis is a combination between the observation and the forecast at the observation locations

$$x^a = \alpha x^f + (1 - \alpha) y^o$$
Statistical assimilation

It turns out that the best estimate is achieved when:

\[x^a = x^f + \frac{\sigma_f^2}{\sigma_f^2 + \sigma_o^2} (y^o - x^f) \]

Observation increment
Analysis increment
How does it relate to statistical assimilation?

\[
x^a = x^f + \frac{\sigma_f^2}{\sigma_f^2 + \sigma_o^2} (y^o - x^f)
\]

\[
x^a = x^f + G(y^o - x^f)
\]
G includes it all

- Distance to the obs
- Time from the obs
- Expected obs error
- Quality control
Obs-nudging: Weighting Functions

\[G = W_{qf} W_{\text{horizontal}} W_{\text{vertical}} W_{\text{time}} \]

The weights can vary with the distance between the grid points and the observation in horizontal space, vertical space, and time.

\[W = \frac{\sum W_i \cdot \text{weight}}{\sum W_i} \]

At each grid point, the weighted effects from all the nearby observations are summed.
The fourth dimension: time

- Sequential assimilation
- Continuous assimilation
- Putting it all together
Variational methods

non-sequential, intermittent assimilation:

\[\text{obs} \rightarrow \text{analysis+model} \rightarrow \text{obs} \]

non-sequential, continuous assimilation:

\[\text{obs} \rightarrow \text{analysis+model} \rightarrow \text{obs} \]

Very complex, maybe not better.
Sequential assimilation

sequential, intermittent assimilation:

obs → analysis (model) → analysis (model) → analysis (model)

sequential, continuous assimilation:

obs → analysis → obs → analysis → obs → analysis → obs → analysis

This is RTFDDA!
Complexity

Real time assimilation
- Non-linear methods
 - (4D-Var or 4D-PSAS with model error
 - EKF
 - Intermittent 4D-Var or 4D-PSAS
 - 3D-Var or 3D-PSAS
 - Optimal Interpolation (OI)

Retrospective analysis
- Kalman smoother
 - Fixed-lag Kalman smoother
 - Long 4D-Var or 4D-PSAS
 - Cressman Successive Corrections nudging
 - Interpolation of observations