2011 improvements in weather guidance for aviation from hourly updated NOAA models: *HRRR, Rapid Refresh*

Key info
- 3km HRRR – switch from RUC to Rapid Refresh parent – April 2011
- 13km Rapid Refresh replacing 13km RUC
 - final testing at NCEP, planned implementation – Dec11–Jan12
- HRRR – key component for CoSPA
 - 2012 – 3km radar assimilation, radial wind, soil adjustment

NOAA Earth System Research Lab, Boulder, CO

Stan Benjamin
Steve Weygandt, Curtis Alexander, Ming Hu,
Tanya Smirnova, David Dowell, rest of ESRL team,
NCAR, NCEP, CoSPA partners (MIT/LL,NCAR)

Friends and Partners in Aviation Weather
12 October 2011 - Las Vegas - NBAA
Hourly Updated NOAA NWP Models

Rapid Refresh (RR) replaces RUC at NCEP in Dec11-Jan12
WRF, GSI with RUC features

13km Rapid Refresh (mesoscale)

13km RUC (mesoscale)

3km HRRR (storm-scale)

RUC – current oper model, new 18h fcst every hour

High-Resolution Rapid Refresh
Experimental 3km nest now inside RR, new 15-h fcst every hour
NOAA/ESRL/GSD/AMB Models

<table>
<thead>
<tr>
<th>Model</th>
<th>Run at:</th>
<th>Domain</th>
<th>Grid Points</th>
<th>Grid Spacing</th>
<th>Vertical Levels</th>
<th>Vertical Coordinate</th>
<th>Lowest Level</th>
<th>Pressure Top</th>
</tr>
</thead>
<tbody>
<tr>
<td>RUC</td>
<td>GSD, NCEP</td>
<td>CONUS</td>
<td>451 x 337</td>
<td>13 km</td>
<td>50</td>
<td>Sigma/Isentropic</td>
<td>5 m</td>
<td>~50 mb</td>
</tr>
<tr>
<td>RR</td>
<td>GSD, NCEP-exp</td>
<td>North America</td>
<td>758 x 567</td>
<td>13 km</td>
<td>50</td>
<td>Sigma</td>
<td>8 m</td>
<td>10 mb</td>
</tr>
<tr>
<td>HRRR</td>
<td>GSD</td>
<td>CONUS</td>
<td>1799 x 1059</td>
<td>3 km</td>
<td>50</td>
<td>Sigma</td>
<td>8 m</td>
<td>85 mb</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model</th>
<th>Version</th>
<th>Time-Step</th>
<th>Forecast Length</th>
<th>Initialized</th>
<th>Boundary Conditions</th>
<th>Run Time</th>
<th># of CPUs</th>
</tr>
</thead>
<tbody>
<tr>
<td>RUC</td>
<td>N/A</td>
<td>18 s</td>
<td>18 hrs</td>
<td>Hourly (cycled)</td>
<td>NAM</td>
<td>~25 min</td>
<td>36</td>
</tr>
<tr>
<td>RR</td>
<td>WRF-ARW v3.2+</td>
<td>60 s</td>
<td>18 hrs</td>
<td>Hourly (cycled)</td>
<td>GFS</td>
<td>~25 min</td>
<td>160</td>
</tr>
<tr>
<td>HRRR</td>
<td>WRF-ARW v3.2+</td>
<td>15-20 s</td>
<td>15 hrs</td>
<td>Hourly (no-cycle)</td>
<td>RUC</td>
<td>~50 min</td>
<td>1000</td>
</tr>
</tbody>
</table>
NOAA/ESRL/GSD/AMB Models

<table>
<thead>
<tr>
<th>Model</th>
<th>Run at:</th>
<th>Domain</th>
<th>Grid Points</th>
<th>Grid Spacing</th>
<th>Vertical Levels</th>
<th>Vertical Coordinate</th>
<th>Lowest Level</th>
<th>Pressure Top</th>
</tr>
</thead>
<tbody>
<tr>
<td>RUC</td>
<td>GSD, NCEP</td>
<td>CONUS</td>
<td>451 x 337</td>
<td>13 km</td>
<td>50</td>
<td>Sigma/Isentropic</td>
<td>5 m</td>
<td>~50 mb</td>
</tr>
<tr>
<td>RR</td>
<td>GSD, NCEP-exp</td>
<td>North America</td>
<td>758 x 567</td>
<td>13 km</td>
<td>50</td>
<td>Sigma</td>
<td>8 m</td>
<td>10 mb</td>
</tr>
<tr>
<td>HRRR</td>
<td>GSD</td>
<td>CONUS</td>
<td>1799 x 1059</td>
<td>3 km</td>
<td>50</td>
<td>Sigma</td>
<td>8 m</td>
<td>20 mb</td>
</tr>
</tbody>
</table>

Changes for HRRR in 2011

<table>
<thead>
<tr>
<th>Model</th>
<th>Version</th>
<th>Time-Step</th>
<th>Forecast Length</th>
<th>Initialized</th>
<th>Boundary Conditions</th>
<th>Run Time</th>
<th># of CPUs</th>
</tr>
</thead>
<tbody>
<tr>
<td>RUC</td>
<td>N/A</td>
<td>18 s</td>
<td>18 hrs</td>
<td>Hourly (cycled)</td>
<td>NAM</td>
<td>~25 min</td>
<td>36</td>
</tr>
<tr>
<td>RR</td>
<td>WRF-ARW v3.2+</td>
<td>60 s</td>
<td>18 hrs</td>
<td>Hourly (cycled)</td>
<td>GFS</td>
<td>~25 min</td>
<td>160</td>
</tr>
<tr>
<td>HRRR</td>
<td>WRF-ARW v3.2+</td>
<td>18-23 s</td>
<td>15 hrs</td>
<td>Hourly (no-cycle)</td>
<td>RR</td>
<td>~50 min</td>
<td>1064</td>
</tr>
</tbody>
</table>
Key changes to 3km HRRR since last FPAW in October 2010

- **Change of parent model from RUC to Rapid Refresh** – April 2011
 - Community frameworks - WRF-ARW model, GSI data assimilation
 - Additional observations – Satellite radiances, aircraft water vapor (UPS, SWA), boundary-layer profilers
 - Much improved initialization for tropical cyclones
- **Less diffusion in HRRR model** – April 2011
 - Increases # of smaller storms, avoided mountain wave problems
- **Improved scripts, trick added to increase speed of WRF model**
 - 30 min faster availability
- **Added assimilation of surface pseudo-observations in boundary layer** – 7 July 2011
 - Less moist bias, helped reduced excessive convective storm coverage in May-June 2011
Key changes to 3km HRRR since last FPAW in October 2010

• **Change of parent model from RUC to Rapid Refresh** – April 2011
 – Community frameworks - WRF-ARW model, GSI data assimilation
 – Additional observations – Satellite radiances, aircraft water vapor (UPS, SWA), boundary-layer profilers
 – **Much improved initialization for tropical cyclones**

• **Less diffusion in HRRR model** – April 2011
 – Increases # of smaller storms, avoided mountain wave problems

• **Improved scripts, trick added to increase speed of WRF model**
 – 30 min faster availability

• **Added assimilation of surface pseudo-observations in boundary layer** – 7 July 2011
 – Less moist bias, helped reduced excessive convective storm coverage in May-June 2011
Severe weather outbreak – tornadoes in Alabama including Tuscaloosa
HRRR skill in 2011 vs. 2010

E. US – 25 dBZ, averaged to 40km, 10 July - 30 Sept

Averaged over all forecast durations (1h-12h) valid at each time of day

HRRR-2011 had a much higher PODy, especially for 15z-21z.

But HRRR-2011 also had too high a bias (from too moist soil). Granted, HRRR-2010 was too low (dry) from 08z-21z.
HRRR Experiments – does radar help?

RUC -- HRRR
RR -- HRRR

RUC -- HRRR
RR -- HRRR

Every 2 hours
Every 1 hour

REAL-TIME
RETROSPECTIVE

NO radar assimilation
YES radar assimilation

Aug 2011
11 12 13 14 15 16 17 18 19 20 21
“parent” — — — — vs. “child” — — — —

Reflectivity Verification

25 dBZ 13-km
Eastern US

Matched Comparison
12,13,14,19 Aug. 2011
All init times

→3-km fcsts improve upon parent 13-km forecasts
→ radar assim adds skill at both 13-km and 3-km
Transition from RUC to Rapid Refresh at NCEP

• Implementation now expected Dec 2011 – Jan 2011
• 3-mo delay due to prior NAM implementation delays
 – Large NCEP model implementations must be sequential
• Significant changes in RR since FPAW in Oct 2010, especially in Nov-December 2010
 – Key problems in WRF model and data assimilation solved
• Rapid Refresh (initial version) frozen in March 2011
 – ESRL version through Oct 2011 (for CoSPA)
• Changes now in development for **RR version 2**.
 – RRv2 – to be implemented at ESRL during Nov11 to Mar12
 • Will improve HRRR forecasts in 2012
 – RRv2 at NCEP later in 2012 pending NCEP computer availability
CoSPA Operational Evaluation Periods

HRRR Hourly Reliability (≥ 12 hr forecast)
All Missed/Incomplete Runs

HRRR Availability

CoSPA Operational Evaluation Periods

3 month running average
CoSPA Operational Evaluation Periods

HRRR Hourly Reliability (\geq 12 hr forecast)
More Than One Consecutive Missed/Incomplete Run

HRRR Availability

CoSPA Operational Evaluation Periods

3 month running average
CoSPA Operational Evaluation Periods

HRRR Hourly Reliability (≥ 12 hr forecast)
More Than Two Consecutive Missed/Incomplete Runs

HRRR Availability

CoSPA Operational Evaluation Periods

3 month running average
HRRR Hourly Reliability (≥ 12 hr forecast)
More Than Three Consecutive Missed/Incomplete Runs

HRRR Availability

CoSPA Operational Evaluation Periods

3 month running average
HRRR computer reliability from NOAA

• **Current – 1 computer running HRRR**
 – NOAA/ESRL – Boulder
 – Current reliability: 97% for last 12h months (allowing up to 3h gaps)

• **2012-14 – 2 computers running HRRR – interim solution**
 – Boulder – computer 1
 – Fairmont, WV – computer 2
 – Expected reliability to increase further to 98.5-99%
 – In discussion: Fill in missing HRRR products with hourly 13km Rapid Refresh and 6-hourly 4km NAM-nest
 • lower quality: can’t have storm-resolving resolution and hourly updating with radar assimilation outside of the HRRR

• **2015 – NCEP running HRRR**
 – NOAA/NCEP computing budget – will allow no increase before 2015
 – Cost of HRRR – 15-22% (!) of current NCEP computing for all operational models (GFS, NAM, RUC, ensembles)

• Computing acquisition for NOAA Research (e.g., HRRR processors funded by FAA and NOAA) has been very efficient
 – Also, very costly to go from ~99% to 99.9%

• **Conclusion:** Interim HRRR computing for 2012-14
HRRR (and RR) Future Milestones

- Conversion of all output to GRIB2 format
 Apr 2011
- Transition from RUC to RR parent model
 Apr 2011
- DOE-funded HRRR FTP site for energy industry
 May 2011
- Update to WRF-ARW v3.3.1
 Nov 2011
- Reflectivity data assimilation at 3 km scale
 2012
- Adjustment to soil moisture from surface obs
 Nov 2011
- Extension of surface obs through boundary layer
 Jul11, Nov11
- Assimilate radial velocity at 3 km scale
 2012
- Incorporate SatCast products at 3 km scale
 2012
- Apply cloud analysis (with METAR and satellite)
 at 3km resolution
 2012
Reflectivity Assimilation on 3-km (HRRR) Grid

HRRR (3-km) grid produces convective storms explicitly. Reflectivity-based temp. tendencies are applied during sub-hourly cycling (forward model integration only, no digital filtering).

Reflectivity-based temperature tendency

interpolation from RR, hydrometeor specification
convection develops quickly (RR cycling, DDFI)

11 May 2011 2100 UTC

more accurate representation of system maturity

1-h fcst without 3-km radar cycling

1-h fcst with 3-km radar cycling
Composite Reflectivity
0200 UTC
11 May 2011

more accurate forecast of convective system propagation

12 May 2011 0200 UTC

6-h fcst
without 3-km radar cycling

12 May 2011 0200 UTC

6-h fcst
with 3-km radar cycling
Initial testing – *additional* 3km radar assimilation in 15-min cycle (Radar-DFI in 13-km RR (parent model) **AND 3-km HRRR 15-min cycling**)

Eastern US, Reflectivity > 25 dBZ

HRRR Reflectivity Verification – select cases in May-July 2011

CSI 03 km

1x Latent heating rate in RR and HRRR
1x Latent heating rate in RR only

CSI 40 km

1x Latent heating rate in RR and HRRR
1x Latent heating rate in RR only

Improved fcst skill from 1-12h adding 3km/15min assim
HRRR Forecast Behavior

2011

1. Higher bias in convection over eastern US
2. Difficulty propagating/maintaining MCSs
3. Lead in convective initiation (early AM runs)
4. False alarm cases

2012 Targets

1. Lower peak bias in convection over eastern US
2. Less difficulty propagating/maintaining MCSs
3. Improve timing convective initiation (early AM runs)
4. Fewer false alarm cases

“Simplistic” 13-km latent heating
No 3-km data assimilation

RRv2/HRRR Model Development and Evaluation

“Smarter” 13-km latent heating
3-km radar data assimilation
HRRR (and RR) Recent/Future Milestones

- DOE-funded HRRR FTP site for energy industry
 May 2011
- HCPF - HRRR Convective Probabilistic Forecast
 - 2011 version – May 2011
- Reflectivity data assimilation at 3 km scale
 2012
- Assimilate radial velocity at 3 km scale
 2012
- HRRR demo @ESRL, @WV improves accuracy/reliability
 2012-14
- Rapid Refresh operational at NCEP
 Dec11-Jan12
- Ensemble Rapid Refresh (NARRE) at NCEP
 ~2014
- HRRR operational at NCEP
 2015?
- Ensemble HRRR (HRRRE) at NCEP
 2016?
- Chemistry added to RR and HRRR for
 volcanic ash, visibility, fires
 current testing, real-time ~2017?