Airborne In Situ Weather Observations
Government Perspective

Presented to: Friends and Partners of Aviation Weather

By: Tammy Farrar, FAA Aviation Weather Group

Date: October 21, 2010
Airborne In Situ Weather Observations
Government Perspective

• Current Status
 – MDCRS Contract
 – Eddy Dissipation Rate (EDR)
 – Graphical Turbulence Guidance (GTG)
 – Future Efforts

• Optimization
 – Right-sizing Program – Airborne Obs Component
 – Need for interagency/industry-level agreements
Airborne In Situ Weather Observations
MDCRS Contract Update

• Current contract with ARINC expires Mar 31, 2011.
• Market survey currently out on FAA Business Opportunities website
 – https://faaco.faa.gov/
Airborne In Situ Weather Observations
Eddy Dissipation Rate (EDR)

• Current Deployments
 – DAL ~80 737NGs
 – UAL ~100 757s
 – SWA 10 737s (FY10)

• FY11
 – Continue SWA deployments
 – Begin deployment DAL and UAL 767s
 • Transoceanic coverage
Average 24 hour EDR coverage

UAL ~100 a/c

DAL ~80 a/c

SWA 10 a/c
Airborne In Situ Weather Observations
GTG2 Implementation

• GTG2 incorporates EDR observations
• GTG2 implemented operationally at AWC 1Qtr 2010
Projected GTG releases – next 7 years

<table>
<thead>
<tr>
<th>Version</th>
<th>Capabilities</th>
<th>Op. date*/enter NWEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>GTG1Upper levels</td>
<td>RUC20</td>
<td>3/2003*</td>
</tr>
<tr>
<td>GTG2Improved GTG1</td>
<td>+Mid levels</td>
<td>2/11/2010*</td>
</tr>
<tr>
<td></td>
<td>+Uses UAL in situ</td>
<td></td>
</tr>
<tr>
<td>GTG2.5</td>
<td>13 km WRF RR</td>
<td>1/1/2011</td>
</tr>
<tr>
<td></td>
<td>Mid levels</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+VWA insitu</td>
<td></td>
</tr>
<tr>
<td>GTG31</td>
<td>13 km WRF RR</td>
<td>3/31/2012</td>
</tr>
<tr>
<td></td>
<td>+MWT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Optimized use of insitu</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1-12 hrs</td>
<td></td>
</tr>
<tr>
<td>GTGN1</td>
<td>NTDA2/DCIT/insitu</td>
<td>6/30/2012</td>
</tr>
<tr>
<td></td>
<td>GTG3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>mid+upper levels, 0-15 min</td>
<td></td>
</tr>
<tr>
<td>GTG4Improved GTG3</td>
<td>Ensembles/Probabilistic forecasts</td>
<td>FY15</td>
</tr>
<tr>
<td></td>
<td>all altitudes, full WRFRR domain</td>
<td></td>
</tr>
<tr>
<td>GTG5</td>
<td>Improved GTG4</td>
<td>FY17</td>
</tr>
<tr>
<td></td>
<td>CIT/HRRR</td>
<td></td>
</tr>
<tr>
<td>GTG6Improved GTG5</td>
<td>< FL650</td>
<td>FY19</td>
</tr>
</tbody>
</table>

Seg 1 versions

NextGen IOC versions

Future Efforts

• Future EDR Deployments
 – “When is enough, enough?”
 – NAS cost-benefit needed for possible future government buy-ins
 – DAL EDR Proof of Concept Demo
 • Attempting to document benefits to NAS capacity and flight operations
 • Data collect on-going, thru mid-January 2011
Airborne In Situ Weather Observations

Future Efforts

• MCR on contract for EDR NAS cost-benefits study
 – Purpose:
 • To determine delays due to Clear Air and Convectively Induced Turbulence
 • To quantify the amount of avoidable turbulence delays that EDR could be expected to mitigate
 – Preliminary results available in FY11
Airborne In Situ Weather Observations Optimization

- The selection of specific aircraft to obtain the data required to meet the government’s forecasting needs while reducing redundant or unnecessary observations that increase communications and processing costs.

Spatial Coverage

Temporal Coverage

ACARS - Mean Obs by Hour
May 13, 2001 to June 2, 2001 (Conus)

- Number of Observations vs Hour (UTC)
Airborne In Situ Weather Observations Optimization

- FAA Right-sizing Program: Airborne Obs Component
 - Baseline of current airborne sensor capabilities near complete
 - Concept of Operations in development
 - Requirements analysis underway
 - Gap identification (Super Density Terminal Ops) FY11
 - Gap Identification (En Route) FY11-12
 - Mitigation strategy development/demos FY12
Airborne In Situ Weather Observations Optimization

• Cooperative strategy development
 – FY11 – Governmental interagency agreements
 – FY12 – Government/Industry interagency agreements
 • Cost responsibilities?
 • Data access?
Airborne In Situ Weather Observations

Summary

• FY10:
 – SWA EDR deployments begun
 – GTG2 implemented operationally
 – DAL EDR Demo On-going

• FY11:
 – Begin DAL/UAL 767 EDR deployments
 – Optimization – Right-sizing Activities
 – Conclude DAL EDR Demo and Cost Benefits Analysis

• Future (FY11/12 →):
 – Optimization
 – Cost and data sharing policy/agreements development
• Back Up Slides
Airborne In Situ Weather Observations

Terminology

- **AM DAR** – Aircraft Meteorological DAta and Relay: A WMO-sanctioned international program of nations with air carriers that provide automated weather observations.

- **ACARS** - Aircraft Communications, Addressing, and Reporting System: The name of a datalink service provided by Aeronautical Radio, Inc. (ARINC) that sends information between aircraft and ground stations.

- **TAMDAR** - Tropospheric Airborne Meteorological DAta Reporting: “AirDat's network of patented airborne sensors…which provide a continuous stream of real time observations….“. (http://www.airdat.com/./index.php)