Progress in Automated Turbulence Observations from Aircraft

Larry B. Cornman
National Center for Atmospheric Research
The Need for Automated Turbulence Reports

- Turbulence can be a very dynamic and spatially localized phenomena – hence the need for real-time measurements.
- Pilot reports are problematic in that they are subjective measures of the aircraft response to the turbulence – not quantitative measures of the atmosphere.
In situ Turbulence Measurement and Reporting System

Goal: To augment/replace subjective PIREPs with objective and precise turbulence measurements.

Features:
- Atmospheric turbulence metric: eddy dissipation rate, (EDR).
- EDR can be scaled into aircraft turbulence response metric (RMS-g).
- Adopted as ICAO Standard
Conversion Between EDR and RMS-g: Illustrated with Data from NASA B-757 Aircraft

2407 one-minute samples

Measured RMS-g vs. EDR-predicted RMS-g

Median: $r=0.94, m=0.98$

Peak: $r=0.95, m=1.03$
Increase in Spatial/temporal Coverage: UAL EDR Reports Compared to pireps

1.3 million EDR reports/month from 100 or so aircraft - compared to 55k pireps from all aircraft. Imagine with 400 SWA aircraft added!
EDR on Experimental ADDS

- Display contains EDR reports, pireps, GTG.
- Movie loops, cross-sections, etc…
- Currently in use by UAL Meteorology.
- Soon to be in use by UAL Dispatch and AWC forecasters.
Major Upcoming Activities

- SWA implementation in CY06.
- Uplink demonstration with UAL in CY06.
- EDR ingest into GTG2: operational, Fall ’06.