Initial Assessment of Forecast Performance in Predicting Wind Shear Conditions Conducive to Wind Compression

22 July 2014

Colleen Reiche

Work Sponsored by FAA ANG-C6
Two Components of Wind Compression Events

• Specific meteorological wind shear conditions may manifest as wind compression events of differing severity depending on air traffic volume and active airspace configuration (i.e., operational sensitivity)
 – Wind shear environment “sets the stage” for potential wind compression events
 • Not translated into a wind compression event unless it disrupts air traffic flow
 • Shear can have varying “magnitudes” depending on differences in wind vectors with altitude
 – Sufficient traffic demand, relative to operational capacity, necessary to create wind compression event
 • Per airport dependency (route congestion, arrival capacity, etc.)
 – Combination of wind shear environment and air traffic volume “magnitudes” dictates severity of wind compression event

<table>
<thead>
<tr>
<th>Wind Compression</th>
<th>Operational Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wind Shear</td>
<td>Low</td>
</tr>
<tr>
<td>Mild</td>
<td></td>
</tr>
<tr>
<td>Moderate</td>
<td></td>
</tr>
<tr>
<td>Severe</td>
<td></td>
</tr>
</tbody>
</table>
Identification of Critical Wind Shear Values

- Isolate key wind conditions conducive to wind compression events prior to consideration of operational dependencies
- Generated distribution of maximum wind shear values at Core airports during historical wind compression days (2009-2011) at both target altitude layers (0-10 kft, 1-5 kft)
 - Distributions are representative of wind shear conditions during wind compression at all airports
- Three critical statistically significant wind shear values identified from representative maximum wind shear distributions
 - Identified independently in both target altitude ranges (0-10 kft and 1-5 kft)
 - Can be used to define four categories of wind shear magnitude
Preliminary Wind Shear Magnitude Categories

- Four wind shear categories determined from critical values in representative maximum wind shear distributions
 - Identified independently for both altitude layers
 - Wind speeds greater at high altitudes, which can produce greater quartile shear values for 0-10 kft layer
 - Using same categories for both could cause mis-categorization of shear conditions
 - Round quartile values to nearest 10 kts
 - Categories defined by maximum wind shear ranges between critical thresholds

- These categories used to assess the skill of both forecast products (HRRR, SREF) at predicting wind shear conditions during historical wind compression events (Dec 2013 – Jan 2014)
Target Wind Shear Products

High Resolution Rapid Refresh (HRRR) 3D Wind Forecast
- Wind predictions at 49 altitudes
- Operational in 2014 and currently used by ATM decision makers for situational awareness
- 3 km horizontal spatial resolution
- Issued hourly with 1 hour forecast increments out to 15 hours lead time

Short Range Ensemble Forecast (SREF) 3D Wind Forecast
- Wind predictions at 8 altitudes
- Operational use for situational awareness
- 40 km horizontal spatial resolution
- Hourly forecasts issued four times a day (3Z, 9Z, 15Z, 21Z) out to 87 hours lead time

NEXRAD Vertical Wind Profile (VWP) Observations

Forecast Grid Spacing
- Radar locations within miles of the Core airports
- Observations taken every 10 minutes
- Vertical wind profile constructed from observations at various elevation angles

From Chrisman and Smith (2009)
Forecast Analysis - Experiment Design

- Validate 1-6 hour forecasts of wind shear conditions at low altitudes at each hour during 69 NTML defined wind compression events from Dec 2013 – Jan 2014 at 8 target airports
 - Focus on airports with greatest frequency of events (ATL, DTW, EWR, JFK, LGA, LAX, PHL, DCA)
 - Validate forecasts for key arrival altitude layers (0-10 kft, 1-5 kft) on appropriate spatial scales
- Compare each hourly lead time forecast to observations during target events
 - Only one lead time SREF forecast available at every hour during each event (03Z, 09Z, 15Z, 21Z only)
 - Enables evaluation of temporal performance needs for wind shear prediction

TRACON Scale

Arrival Flows

HRRR +1 hr
HRRR +2 hr
HRRR +3 hr
HRRR +4 hr
HRRR +5 hr
HRRR +6 hr
SREF +2 hr

VWP obs
SREF +3 hr
VWP obs
VWP obs
VWP obs
VWP obs
VWP obs
VWP obs
SREF +4 hr
VWP obs

1700 Z 1705 Z 1715 Z 1725 Z 1735 Z 1745 Z 1755 Z
1800 Z 1805 Z 1815 Z 1825 Z 1835 Z 1845 Z 1855 Z
1900 Z 1905 Z

Event Start
Event End
Assessing Forecast Performance

- Evaluate relative forecast frequency for observations in each wind shear category for each combination of lead time, airport, and altitude layer
 - Generated distribution of forecasted wind shear categories for those observations
 - No frequencies shown if there were no observations in a given wind shear category
 - Forecast accuracy expressed by percentage of observations correctly predicted (“hits”)
 - Large portion of correctly predicted observations (wider black box) indicates good forecast skill of that category
 - Small number of observations in a given wind shear category can produce misleading frequencies
 - Highlight scenarios with fewer than 5 observations in that wind shear category

![Wind Shear Distribution Diagram]

Perfect forecast: 100% hits in each observed wind shear category
Most observed severe wind shear events correctly predicted by HRRR and SREF at all target airports

HRRR and SREF tended to significantly over-forecast mild or moderate wind shear observations
- May create challenges in predicting potential for wind compression
- May affect ability to predict event onset and cessation

Limitation in sample size due to SREF issuance frequency (every 6 hours)
- Results combined across NY Metro airports

80% of severe wind shear observations were “hits” (correctly predicted to be severe)

All minimal wind shear observations predicted to be moderate, indicating over-forecasting
Ongoing Efforts

• Generate refined airport-specific wind shear category definitions
 – More appropriate consideration of regional wind climatology
 – Will enable meteorological identification of significant wind shear events independent of operational impacts (NTML logs)

• Evaluate forecast performance at predicting operationally critical onset of significant wind shear conditions
 – Identify historical wind shear events using refined shear categories
 – Assess forecast performance at predicting timing and severity of wind shear conditions at their onset

• Assess utility and skill of wind shear forecasts relative to operational sensitivity
 – Incorporate considerations of traffic volume and active airspace configuration to more completely characterize wind compression and assess overall event prediction capability
 – Evaluate wind shear forecast performance relative to individual arrival flows
 • Explicitly consider direction of shear vector relative to traffic flow direction at each airport (headwind/tailwind)
 • Evaluate forecast accuracy along each arrival flow path independently

<table>
<thead>
<tr>
<th>Wind Compression</th>
<th>Operational Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Low</td>
</tr>
<tr>
<td>Wind Shear</td>
<td>Mild</td>
</tr>
<tr>
<td></td>
<td>Moderate</td>
</tr>
<tr>
<td></td>
<td>Severe</td>
</tr>
</tbody>
</table>