Service Analysis for Weather Information

Mike Robinson
AvMet Applications, Inc.
robinson@avmet.com

Friends and Partners in Aviation Weather (FPAW)
08 August 2012
Outline

• Weather Service Analysis Research Road Map

• Weather Service Analysis - Haze

• Weather Service Analysis – Terminal Convection Time Of Wind Return (TOWR)

• Summary
Weather Service Analysis Research Road Map

Historical Assessment of Phenomena

Preliminary Operational Impact Analysis

Technical Feasibility Research
 Initial Analysis

Technical Feasibility Research
 Expanded Analysis

Operational Impact & Potential Benefits Quantification

Final Concept Development and Requirements

Service Analysis Research “Gate”
(Project Evaluation Stage)
Haze Service Analysis Background

- Visibility through a haze layer – especially at shallow angles (slant range), often reduces normal visibility (7-10SM) to less than 3SM.
- Aircrafts penetrating through this layer would have difficulty seeing the runway or the airplane in front of them resulting in an Instrument Landing System (ILS) approach.
 - Aircrafts must increase spacing from ~3M to 4-6M for IFR conditions *(JO 7110.65T, Section 5-5-4)*
 - Resulting separation reduces capacity and may impact NAS operations
 - Airports with E/W runway configurations are more susceptible due to sun angle refraction, however this is not always the case (CLT as example for final approach turns)
Haze Service Analysis Results

Haze is a frequently occurring phenomena at many Core NAS airports

Several airports issue TMIls for haze, but often due to haze aloft (not at surface - difficult to observe); Other airports (LAX) can often handle haze-related capacity constraint

Summary of Service Analysis Results

- Surface haze is frequent weather phenomena at many core airports - but most manage capacity constraint with minor impacts
- At airports where haze impacts more significant (e.g., EWR), concern is “haze aloft” – difficult to observe and predict
- Haze impacts at ATL (airport where users noted “haze issues”) currently masked by schedule / operations changes
- Haze Service Analysis – halted and tabled after Phase 1 - Phase 1 report documents all haze service analysis findings

Previously significant haze impact at ATL “vanished” in 2010 (TBFM / TMA changes, airline schedule “de-peak”)
TOWR: Time Of Wind Return in Airport Terminals

- Critical need to know when synoptic wind regime will become re-established (“return”) after transient, storm-induced wind-shift subsides
 - Need for proactive surface management often highest during these impact events
 - One of today’s solution: Asking nearby Towers “Have your winds returned yet?”

Synoptic Wind Direction

- Storm Impact – Winds Shift
 - Enhanced surface management flexibility
 - Reduced taxi time and fuel burn;
 - Increased airport throughput (capacity)
 - Reduced terminal congestion/complexity
 - Increased safety

Preferred Configuration

- 22L, 32L

Reconfigure to Non-Preferred

- 4L, 32R

When Will Wind Return?

When to Reconfigure to Preferred?
TOWR Events at Core-29 Airports (2002-2011)

<table>
<thead>
<tr>
<th>Airport</th>
<th>TS with W with TOWR</th>
<th>TOWR</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATL</td>
<td>38%</td>
<td>69%</td>
</tr>
<tr>
<td>BOS</td>
<td>35%</td>
<td>66%</td>
</tr>
<tr>
<td>BWI</td>
<td>29%</td>
<td>70%</td>
</tr>
<tr>
<td>CLT</td>
<td>33%</td>
<td>74%</td>
</tr>
<tr>
<td>DCA</td>
<td>43%</td>
<td>70%</td>
</tr>
<tr>
<td>DEN</td>
<td>34%</td>
<td>57%</td>
</tr>
<tr>
<td>DFW</td>
<td>40%</td>
<td>68%</td>
</tr>
<tr>
<td>DTW</td>
<td>35%</td>
<td>69%</td>
</tr>
<tr>
<td>EWR</td>
<td>40%</td>
<td>71%</td>
</tr>
<tr>
<td>FLL</td>
<td>46%</td>
<td>78%</td>
</tr>
<tr>
<td>IAD</td>
<td>39%</td>
<td>78%</td>
</tr>
<tr>
<td>IAH</td>
<td>37%</td>
<td>70%</td>
</tr>
<tr>
<td>JFK</td>
<td>32%</td>
<td>60%</td>
</tr>
<tr>
<td>LGA</td>
<td>36%</td>
<td>69%</td>
</tr>
<tr>
<td>MCO</td>
<td>38%</td>
<td>73%</td>
</tr>
<tr>
<td>MDW</td>
<td>38%</td>
<td>75%</td>
</tr>
<tr>
<td>MEM</td>
<td>35%</td>
<td>66%</td>
</tr>
<tr>
<td>MIA</td>
<td>41%</td>
<td>74%</td>
</tr>
<tr>
<td>MSP</td>
<td>36%</td>
<td>66%</td>
</tr>
<tr>
<td>ORD</td>
<td>36%</td>
<td>72%</td>
</tr>
<tr>
<td>PHL</td>
<td>42%</td>
<td>70%</td>
</tr>
<tr>
<td>SLC</td>
<td>40%</td>
<td>64%</td>
</tr>
<tr>
<td>TPA</td>
<td>42%</td>
<td>75%</td>
</tr>
<tr>
<td>LAS</td>
<td>29%</td>
<td>57%</td>
</tr>
<tr>
<td>LAX</td>
<td>25%</td>
<td>50%</td>
</tr>
<tr>
<td>PHX</td>
<td>42%</td>
<td>62%</td>
</tr>
<tr>
<td>SAN</td>
<td>10%</td>
<td>33%</td>
</tr>
<tr>
<td>SEA</td>
<td>32%</td>
<td>73%</td>
</tr>
<tr>
<td>SFO</td>
<td>50%</td>
<td>100%</td>
</tr>
</tbody>
</table>

© AvMet Applications Inc. (2012) All rights reserved.
Not for public distribution;
Proprietary Information.
Time Of Wind Return (TOWR) – 2002-2011

- Moderate similarity in TOWR length among airports in each region
 - JFK, IAH, TPA interesting outliers

- Separating TOWR that occurs with / without ongoing airport convection isolates “operational opportunities” and increases value of results
TOWR Taxi-Out Impacts, Potential Benefits Pool
(NYC/BOS & DC/PHL Example)

- Largest WS and TOWR impacts associated with convection at New York airports
 - Mostly between 9-15Z, extending most of the day at JFK
 - Occurs during peak departure demand period
- TOWR (‘back-end’) impacts greater than WS (‘front end’) impacts at one point during the day at most Northeast airports
 - Between 9-15 Z at majority of airports, also during peak departure demand time
 - Between 00-03Z at BWI
TOWR ‘Back-End Impact’ Potential Improvement

- Airports ranked by combined TOWR event frequency and “size” of taxi-out impact
 - Does not take into account other potential impacts / potential benefits associated with runway reconfigurations, taxi-in times and arrival operations, etc.
 - Includes both avoidable and unavoidable impact, so only ROM estimate for potential improvement

- Rankings change when individual components combined
 - Florida airports have top 4 most TOWR events annually, rank low for TOWR taxi-out impacts per aircraft

- Airports ranking highest for annual TOWR impact: ORD, PHL, JFK, IAH, DCA

<table>
<thead>
<tr>
<th>Annual Average TOWR Events (A)</th>
<th>FLL</th>
<th>MCO</th>
<th>MIA</th>
<th>TPA</th>
<th>DFW</th>
<th>MEM</th>
<th>IAH</th>
<th>MDW</th>
<th>ORD</th>
<th>MSP</th>
<th>DFW</th>
<th>PHX</th>
<th>DCA</th>
<th>IAD</th>
<th>BWI</th>
<th>ATL</th>
<th>CLT</th>
<th>SLC</th>
<th>DEN</th>
<th>LGA</th>
<th>JFK</th>
<th>EWR</th>
<th>BOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>31</td>
<td>26</td>
<td>24</td>
<td>15</td>
<td>19</td>
<td>18</td>
<td>17</td>
<td>16</td>
<td>15</td>
<td>12</td>
<td>15</td>
<td>18</td>
<td>14</td>
<td>11</td>
<td>16</td>
<td>10</td>
<td>8</td>
<td>12</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Avg. TOWR Taxi-Out Impact per Aircraft (B) | 4 | 4 | 3 | 3 | 8 | 2 | 9 | 7 | 12 | 6 | 6 | 12 | 9 | 6 | 9 | 7 | 5 | 2 | 6 | 4 | 22 | 11 | 8 |

| Annual TOWR Taxi-Out Impact per Aircraft (C = A x B) | 132 | 124 | 78 | 72 | 120 | 38 | 162 | 192 | 90 | 72 | 180 | 162 | 84 | 99 | 140 | 60 | 22 | 96 | 40 | 176 | 132 | 48 |

| Annual TOWR Event Rank (A) | 1 | 2 | 3 | 4 | 12 | 6 | 7 | 9 | 10 | 13 | 16 | 13 | 8 | 15 | 20 | 5 | 16 | 19 | 11 | 21 | 22 | 18 | 23 |

| Avg. TOWR Taxi-Out Impact per Aircraft Rank (B) | 17 | 18 | 20 | 21 | 8 | 22 | 6 | 11 | 2 | 13 | 14 | 3 | 7 | 15 | 5 | 10 | 16 | 23 | 12 | 19 | 1 | 4 | 9 |

| Annual TOWR Taxi-Out Impact Rank (C) | 7 | 9 | 16 | 17 | 10 | 22 | 4 | 11 | 1 | 14 | 17 | 2 | 4 | 15 | 12 | 6 | 19 | 23 | 13 | 21 | 3 | 7 | 20 |
TOWR Event Classification Tree Diagram

Seeking Operationally-Relevant TOWR Predictions

Dataset – All terminal convective events

TOWR Event

NO TOWR Event

Storms will prevent TOWR opportunities; Set runways and stage for storm end

No Storms on Runways at TOWR

TOWR will be storm-free; Proactive rwy / surface mgmt opportunities

No runways reconfig; Stage surface & plan arrivals accordingly

Long TOWR (> 2 hr)

Short TOWR (< 1 hr)

Storms on Runways at TOWR

Coordinate and Plan for Multiple Wind Shifts (Runways, Surface, Arrivals)

Plan multiple rwy reconfigs; Target decision points for taxi queues, holding stacks

Plan for extended terminal ops in wind-shift environment (rwys, surface, final approach)

Stage surface & manage arrivals for TOWR conditions soon after rwy storms clear

Stage surface & manage arrivals for “original” conditions soon after rwy storms clear

Long + (Storm End to TOWR)

Short + (Storm End to TOWR)

Long + (Storm End to TOWR)

Short + (Storm End to TOWR)

Long - (TOWR to Storm End)

Short - (TOWR to Storm End)

Storm impact short & “original” wind conditions once done; prepare for minimal disruption

© AvMet Applications Inc. (2012) All rights reserved. Not for public distribution; Proprietary Information.
Preliminary TOWR Event Classification Scheme: ATL *(Precursor to Predictor)*

ATL TOWR Event

No Storms on Runways at TOWR

- Absolute Wind Shift (80-100°)
- Storm Intensity (Level 3-5)

- Long TOWR (> 2 hr)
- Short TOWR (< 1 hr)

- Synoptic Wind Direction

- Not Enough Data

Storms on Runways at TOWR

- Absolute Wind Shift (50-60°)
- Storm Intensity (Level 6)

- Wind Shift (-90 to -120°)
- Storm Intensity (Level 6)
- Distance to Storm (<= 5 mi)
- Synoptic Speed+Gust (0-4 kts)

- Wind Shift (60-90°)
- Storm Intensity (<= Level 5)
- Distance to Storm (5-50 mi)
- Synoptic Speed+Gust (16-24 kts)

- Long △ + (Storm End to TOWR)
- Short △ + (Storm End to TOWR)
- Long △ + (Storm End to TOWR)
- Short △ + (Storm End to TOWR)
- Long △ - (TOWR to Storm End)
- Short △ - (TOWR to Storm End)
Summary

- TOWR events pervasive among most Core-29 airports
 - Most wind shift events have an associated wind return across all airports

- Initial analysis of TOWR impacts / benefits pool for departure operations demonstrates need and potential applications of TOWR predictor
 - Largest avg per aircraft TOWR taxi-out delay per day: JFK (22 min)
 - Top-5 airports with highest TOWR annual taxi-out delay benefits pool:
 1. ORD, 2. PHL, 3. JFK, 4. IAH, 5. DCA

- Technically feasible to create preliminary TOWR classification scheme (precursor to TOWR predictor)
 - Event classification tree developed in context of operational needs
 - Statistical model identifies most important classifiers
 - Adding more data to refine thresholds and “touch on all branches of the tree”
 - Examining numerical forecast data, additional sensor data, etc.

- Work continues on developing / testing initial TOWR predictor & evaluating opportunities / benefits for current ops and NextGen OI’s and DSTs under development